Scala JS
Scala JS UI frameworks
It turns out, that scala JS Dom is simply a facade for the browser API. Dedav works, through providing a reference to a scala js dom Div element.
Due to how fundamental the statement above is, we implicitly support all JS UI frameworks. It must be possible to coerce the DIV wrapper of your framework into a scala js dom Div. However, as I use some frameworks myself, it's a little easier to get started ...
Integrations
Laminar
See the LaminarViz.simpleEmbed
function, to get started. It returns a div, which you can put, anywhere you want in your app. Here it's just added where it's constructed for the sake of simplicity.
The only constraint, is that the div must have a well defined size and height.
import com.raquo.laminar.api.L._
import org.scalajs.dom
import viz.extensions.*
import viz.Utils
import viz.LaminarViz
import viz.vega.plots.{BarChart, given}
val appContainer = dom.document.querySelector(s"#${node.id}")
node.setAttribute("style", s"width:50vmin;height:50vmin")
renderOnDomContentLoaded(appContainer, chartExample())
object chartExample:
val data = Var(List(2.4, 3.4, 5.1, -2.3))
val chartDiv = div(
width := "40vmin",
height := "40vmin",
)
def apply(): Div =
div(
p("We want to make it as easy as possible, to build a chart and get our data into it."),
span("Here's a random data set: "),
child.text <-- data.signal.map { data =>
data.mkString("[", ",", "]")
},
p(),
button(
"Add a random number",
onClick --> {_=>data.update{data =>data :+ scala.util.Random.nextDouble() * 5}}),
p(),
child <-- data.signal.map { data =>
val barChart: BarChart = data.plotBarChart(List(viz.Utils.fillDiv))
LaminarViz.simpleEmbed(barChart, Some(chartDiv))
},
p()
)
end apply
end chartExample
This works quickly and easily, but it has some downsides.
- Replot the whole chart, on every render.
- No interaction. The chart assumes, that the last thing you want to do with it, is get it on the screen.
It turns out, we can do w whole lot better, with vega View ... in the following example. At the expense of a little complexity, our chart is now interactive!
import com.raquo.laminar.api.L.*
import org.scalajs.dom
import viz.extensions.*
import viz.Utils
import viz.LaminarViz
import viz.vega.facades.VegaView
import viz.vega.facades.Helpers.*
import scala.scalajs.js
import js.JSConverters.*
import scala.util.Random
import viz.vega.plots.{BarChart, given}
val appContainer = dom.document.querySelector(s"#${node.id}")
node.setAttribute("style", s"width:50vmin;height:50vmin")
renderOnDomContentLoaded(appContainer, chartExample())
def textIfObject(in: js.UndefOr[js.Dynamic]): String =
if in == js.undefined then "undefined"
else js.JSON.stringify(in.get)
object chartExample:
val (chartDataClickedBus, chartClickCallback) = LaminarViz.dataClickBus
val (aSignalBus, signalCallback) = LaminarViz.signalBus
val data = Var(List(2.4, 3.4, 5.1, -2.3))
val baseChart = BarChart(
List(
viz.Utils.fillDiv,
viz.Utils.removeXAxis,
viz.Utils.removeYAxis
)
)
val setDivSize = div(
width := "40vmin",
height := "40vmin",
)
def apply(): Div =
val (chartDiv : Div, viewOpt: Signal[Option[VegaView]]) =
LaminarViz.viewEmbed(baseChart, Some(setDivSize))
div(
viewOpt.map(_.map(vv =>
vv.safeAddSignalListener("tooltip", signalCallback)
vv.addEventListener("click", chartClickCallback)
// vv.addEventListener("click", dataPrintOnlyClickHandler)
// vv.printState()
)) --> Observer(_ => ()),
p("We also want to find a way, to interact with the chart"),
span("Here's a random data set: "),
child.text <-- data.signal.map { data =>
data.mkString("[", ",", "]")
},
p(
button(
"Add a random number",
onClick --> { _ =>
data.update { data =>
data :+ scala.util.Random.nextDouble() * 5
}
}
)
),
data.signal.combineWith(viewOpt) --> Observer {
(in: (List[Double], Option[VegaView])) =>
val data = in._1
val theView = in._2
theView.foreach { view =>
val dataJs: scala.scalajs.js.Array[js.Object] = data
.map(d =>
js.Dynamic.literal(
category = Random.alphanumeric.take(8).mkString(""),
amount = d
)
)
.toJSArray
view.data("table", dataJs)
view.runAsync() // Don't forget this or nothing happens :-)
}
},
chartDiv,
p("You last clicked on : ", child.text <-- chartDataClickedBus.map(textIfObject)),
p("You last hovered on : ", child.text <-- aSignalBus.map(textIfObject)),
p(),p("")
)
end apply
end chartExample
The key difference, is that we also return the vega view. Hover over, and click the chart items, and you'll see the data printed out. So we have "bi-directional" communication with the chart.
Further, the chart itself, is "updated", rather than thrown away and replotted every time.
Finally, this sets out some low leverl building blocks. If you were to know they types of the things you wanted to plot, one could easily construct some higher level, more typesafe abstractions.
Calico
import scala.scalajs.js
import scala.scalajs.js.annotation.*
import viz.extensions.*
import viz.vega.plots.{BarChart, given}
import calico.*
import calico.html.io.{*, given}
import calico.unsafe.given
import calico.syntax.*
import cats.effect.*
import cats.effect.std.Random
import fs2.*
import fs2.concurrent.*
import fs2.dom.*
import viz.vega.facades.EmbedOptions
calicoChart.renderInto(node.asInstanceOf[fs2.dom.Node[IO]]).useForever.unsafeRunAndForget()
def calicoChart: Resource[IO, HtmlElement[IO]] =
SignallingRef[IO]
.of(List(2.4, 3.4, 5.1, -2.3))
.product(Channel.unbounded[IO, Int])
.toResource
.flatMap { (data: SignallingRef[cats.effect.IO, List[Double]], diff) =>
div(
p("We want to make it as easy as possible, to build a chart"),
span("Here's a random data set: "),
data.map(in => p(in.mkString("[", ",", "]"))),
button(
"Add a random number",
onClick --> (
_.evalMap(_ =>
Random.scalaUtilRandom[IO].toResource.use(r => r.nextDouble.map(_ * 5))
).foreach(newD =>
val d = data.get
IO.println(newD) >>
data.update(_ :+ newD).void
)
)
),
p(""),
data.map { data =>
val barChart: BarChart = data.plotBarChart(
List(
viz.Utils.fillDiv,
viz.Utils.removeYAxis
)
)
val chartDiv = div("")
chartDiv.flatMap{ d =>
// To my astonishment, this doesn't work...
/* val dCheat = d.asInstanceOf[org.scalajs.dom.html.Div]
dCheat.style.height = "40vmin"
dCheat.style.width = "40vmin" */
// end yuck
// I had to set the div size down in here. Then it worked.
viz.CalicoViz.viewEmbed(barChart, Some(chartDiv), Some(EmbedOptions)).map(_._1)
}
}
)
}
MDoc
Is how this documentation works. Setup mdoc with scalajs bundler, and include vega in the bundle. Read the source of this library :-).
Laika with mdoc
Which are a formiddable documentation team. You may need to also work with Laika docs it's documentation. This seciton is here to remind me to;
- disable auto linking (otherwise you'll end up with two sets of imports)
- enable raw content
laikaConfig ~= { _.withRawContent },
and
tlSiteHeliumConfig := {
.site
// NOTE: Needed for Javasriptin in Laika
.autoLinkJS()
}
The github repo of this documentation is a successful example!
Conclusion
The charts in these documents, are displayed using scala JS :-).
What turns out to be really nice about scala JS support, is the seamless transition between exploration in a repl on the JVM, luxuriating in it's rapid feedback and typsafe tooling, and subsequent publication into a browser with scala JS. It's the same code! There is a only a little more ceremony than with a repl - we need to decide the charts position in the document. i.e. find it a parent.
Gotcha : dedav does not include the underlying JS libraries out of it's box.
Javascript libraries
The example dependency is set out above. It should work with any bundling solution, or even by directly embedding the dependancies in the header of the html. Your choice.
The burden freedom is left to you to get vega itself in scope. The simplest package.json depedancies would be;
"dependencies": {
"vega-embed" : "6.20.8"
}
You could also consider going sans-bundler via ESM modules or directly via a script tag in the header of your html - have a look at the source of this page for such an example.