Tej

io.github.quafadas.spireAD.Tej
See theTej companion object
case class Tej[T] extends ScalaNumber, ScalaNumericConversions, Serializable

Attributes

Companion
object
Graph
Supertypes
trait Product
trait Equals
trait ScalaNumericConversions
trait ScalaNumericAnyConversions
class ScalaNumber
class Number
trait Serializable
class Object
trait Matchable
class Any
Show all
Self type
Tej[T]

Members list

Value members

Concrete methods

def %(b: Tej[T])(implicit c: ClassTag[T], f: Field[T], r: IsReal[T], v: VectorSpace[Array[T], T]): Tej[T]
inline def *(b: T)(implicit f: Field[T], inline d: TejDim[T], ct: ClassTag[T]): Tej[T]
inline def *(b: Tej[T])(implicit f: Field[T], inline d: TejDim[T]): Tej[T]
def **(b: Int)(implicit f: Field[T], v: VectorSpace[Array[T], T]): Tej[T]
def **(b: Tej[T])(implicit c: ClassTag[T], f: Field[T], o: Order[T], s: Signed[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]
inline def +(b: T)(implicit f: Field[T], inline d: TejDim[T], ct: ClassTag[T]): Tej[T]
inline def +(b: Tej[T])(implicit f: Field[T], inline d: TejDim[T]): Tej[T]
inline def -(b: T)(implicit f: Field[T], inline d: TejDim[T]): Tej[T]
inline def -(b: Tej[T])(implicit f: Field[T], d: TejDim[T]): Tej[T]
inline def /(b: T)(implicit f: Field[T], inline d: TejDim[T]): Tej[T]
inline def /(b: Tej[T])(implicit f: Field[T], inline d: TejDim[T]): Tej[T]
def /%(b: Tej[T])(implicit c: ClassTag[T], f: Field[T], r: IsReal[T], v: VectorSpace[Array[T], T]): (Tej[T], Tej[T])
def /~(b: Tej[T])(implicit c: ClassTag[T], f: Field[T], r: IsReal[T], d: TejDim[T]): Tej[T]
def =!=(that: Tej[_]): Boolean
def ===(that: Tej[_]): Boolean
def abs(implicit f: Field[T], o: Order[T], t: Trig[T], s: Signed[T], n: NRoot[T], d: TejDim[T]): Tej[T]

abs(x + du) ~= x + du or -(x + du)

abs(x + du) ~= x + du or -(x + du)

Attributes

def acos(implicit f: Field[T], n: NRoot[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]

acos(a + du) ~= acos(a) - 1 / sqrt(1 - a**2) du

acos(a + du) ~= acos(a) - 1 / sqrt(1 - a**2) du

Attributes

def asin(implicit f: Field[T], n: NRoot[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]

asin(a + du) ~= asin(a) - 1 / sqrt(1 - a**2) du

asin(a + du) ~= asin(a) - 1 / sqrt(1 - a**2) du

Attributes

def atan(implicit f: Field[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]

atan(a + du) ~= atan(a) + 1 / (1 + a**2) du

atan(a + du) ~= atan(a) + 1 / (1 + a**2) du

Attributes

def atan2(a: Tej[T])(implicit f: Field[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]

Defined with "this" as the y coordinate:

Defined with "this" as the y coordinate:

this.atan2(a) == atan2(this, a) == atan(this / a) atan2(b + dv, a + du) ~= atan2(b, a) + (- b du + a dv) / (a^2 + b^2)

Attributes

def backward(targets: Seq[Tej[T]])(using f: Field[T], t: Trig[T], n: NRoot[T], td: TejDim[T]): Seq[(Tej[T], T)]
override def byteValue: Byte

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
def ceil(implicit c: ClassTag[T], r: IsReal[T]): Tej[T]
def cos(implicit f: Field[T], t: Trig[T], n: NRoot[T], d: TejDim[T]): Tej[T]

cos(a + du) ~= cos(a) - sin(a) du

cos(a + du) ~= cos(a) - sin(a) du

Attributes

def cosh(implicit t: Trig[T], f: Field[T], n: NRoot[T], d: TejDim[T]): Tej[T]

cosh(a + du) ~= cosh(a) + sinh(a) du

cosh(a + du) ~= cosh(a) + sinh(a) du

Attributes

override def doubleValue: Double

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
override def equals(that: Any): Boolean

Compares the receiver object (this) with the argument object (that) for equivalence.

Compares the receiver object (this) with the argument object (that) for equivalence.

Any implementation of this method should be an equivalence relation:

  • It is reflexive: for any instance x of type Any, x.equals(x) should return true.
  • It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any instances x, y, and z of type Any if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.

If you override this method, you should verify that your implementation remains an equivalence relation. Additionally, when overriding this method it is usually necessary to override hashCode to ensure that objects which are "equal" (o1.equals(o2) returns true) hash to the same scala.Int. (o1.hashCode.equals(o2.hashCode)).

Value parameters

that

the object to compare against this object for equality.

Attributes

Returns

true if the receiver object is equivalent to the argument; false otherwise.

Definition Classes
Equals -> Any
def eqv(b: Tej[T])(implicit o: Eq[T]): Boolean
inline def exp(implicit t: Trig[T], inline d: TejDim[T], n: NRoot[T], r: Field[T]): Tej[T]

exp(a + du) ~= exp(a) + exp(a) du

exp(a + du) ~= exp(a) + exp(a) du

Attributes

override def floatValue: Float

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
def floor(implicit c: ClassTag[T], r: IsReal[T]): Tej[T]
override def hashCode: Int

Calculates a hash code value for the object.

Calculates a hash code value for the object.

The default hashing algorithm is platform dependent.

Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)) yet not be equal (o1.equals(o2) returns false). A degenerate implementation could always return 0. However, it is required that if two objects are equal (o1.equals(o2) returns true) that they have identical hash codes (o1.hashCode.equals(o2.hashCode)). Therefore, when overriding this method, be sure to verify that the behavior is consistent with the equals method.

Attributes

Returns

the hash code value for this object.

Definition Classes
Any
override def intValue: Int

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
override def isValidInt: Boolean

Attributes

Definition Classes
ScalaNumericAnyConversions
override def isWhole: Boolean

Attributes

Definition Classes
ScalaNumericAnyConversions -> ScalaNumber
def isZero: Boolean
def log(implicit f: Field[T], t: Trig[T], n: NRoot[T], d: TejDim[T]): Tej[T]

log(a + du) ~= log(a) + du / a

log(a + du) ~= log(a) + du / a

Attributes

override def longValue: Long

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
def neqv(b: Tej[T])(implicit o: Eq[T]): Boolean
def nroot(k: Int)(implicit f: Field[T], o: Order[T], s: Signed[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]
def pow(p: T)(implicit f: Field[T], o: Order[T], s: Signed[T], t: Trig[T], v: VectorSpace[Array[T], T]): Tej[T]

pow -- base (this) is a differentiable function, exponent is a constant.

pow -- base (this) is a differentiable function, exponent is a constant.

pow(a + du, p) ~= pow(a, p) + p * pow(a, p-1) du

Attributes

def pow(p: Int)(implicit f: Field[T], v: VectorSpace[Array[T], T]): Tej[T]
def pow(b: Tej[T])(implicit c: ClassTag[T], f: Field[T], m: CModule[Array[T], T], o: Order[T], s: Signed[T], t: Trig[T]): Tej[T]

pow -- both base (this) and exponent are differentiable functions.

pow -- both base (this) and exponent are differentiable functions.

(a + du)^(b + dv) ~= a^b + b * a^(b-1) du + a^b log(a) dv

Attributes

def powScalarToTej(a: T)(implicit c: ClassTag[T], f: Field[T], m: CModule[Array[T], T], o: Order[T], s: Signed[T], t: Trig[T], d: TejDim[T]): Tej[T]
def round(implicit c: ClassTag[T], r: IsReal[T]): Tej[T]
override def shortValue: Short

Attributes

Definition Classes
ScalaNumericAnyConversions -> Number
def signum(implicit r: Signed[T]): Int

This is consistent with abs

This is consistent with abs

Attributes

def sin(implicit t: Trig[T], d: TejDim[T], n: NRoot[T], r: Field[T]): Tej[T]

sin(a + du) ~= sin(a) + cos(a) du

sin(a + du) ~= sin(a) + cos(a) du

Attributes

def sinh(implicit t: Trig[T], d: TejDim[T], n: NRoot[T], r: Field[T]): Tej[T]

sinh(a + du) ~= sinh(a) + cosh(a) du

sinh(a + du) ~= sinh(a) + cosh(a) du

Attributes

def sqrt(implicit f: Field[T], n: NRoot[T], t: Trig[T], d: TejDim[T]): Tej[T]

sqrt(a + du) ~= sqrt(a) + du / (2 sqrt(a))

sqrt(a + du) ~= sqrt(a) + du / (2 sqrt(a))

Attributes

def tan(implicit f: Field[T], t: Trig[T], n: NRoot[T], d: TejDim[T]): Tej[T]

tan(a + du) ~= tan(a) + (1 + tan(a)**2) du

tan(a + du) ~= tan(a) + (1 + tan(a)**2) du

Attributes

def tanh(implicit f: Field[T], t: Trig[T], n: NRoot[T], d: TejDim[T]): Tej[T]

tanh(a + du) ~= tanh(a) + (1 - tanh(a)**2) du

tanh(a + du) ~= tanh(a) + (1 - tanh(a)**2) du

Attributes

def unary_-(implicit f: Field[T], d: TejDim[T]): Tej[T]
override def underlying: Object

Attributes

Definition Classes
ScalaNumericConversions -> ScalaNumber

Inherited methods

def isValidByte: Boolean

Attributes

Inherited from:
ScalaNumericAnyConversions
def isValidChar: Boolean

Attributes

Inherited from:
ScalaNumericAnyConversions
def isValidShort: Boolean

Attributes

Inherited from:
ScalaNumericAnyConversions
def productElementNames: Iterator[String]

Attributes

Inherited from:
Product
def productIterator: Iterator[Any]

Attributes

Inherited from:
Product
def toByte: Byte

Attributes

Inherited from:
ScalaNumericAnyConversions
def toChar: Char

Attributes

Inherited from:
ScalaNumericAnyConversions
def toDouble: Double

Attributes

Inherited from:
ScalaNumericAnyConversions
def toFloat: Float

Attributes

Inherited from:
ScalaNumericAnyConversions
def toInt: Int

Attributes

Inherited from:
ScalaNumericAnyConversions
def toLong: Long

Attributes

Inherited from:
ScalaNumericAnyConversions
def toShort: Short

Attributes

Inherited from:
ScalaNumericAnyConversions
protected def unifiedPrimitiveEquals(x: Any): Boolean

Attributes

Inherited from:
ScalaNumericAnyConversions
protected def unifiedPrimitiveHashcode: Int

Attributes

Inherited from:
ScalaNumericAnyConversions

Concrete fields

final lazy val nodeId: UUID